Distortion theorems of plane quasiconformal mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Area Distortion by Quasiconformal Mappings

We give the sharp constants in the area distortion inequality for quasiconformal mappings in the plane. Astala [1] proved the following theorem conjectured by Gehring and Reich in [3]: Theorem A. Let f be a K-quasiconformal mapping of D = {z: \z\ < 1} onto itself with f(0) = 0. Then for any measurable E c D we have \f(E)\<C(K)\E\xlK, where \ • \ stands for the area. The first author [2] obtaine...

متن کامل

A distortion theorem for quasiconformal mappings

© Bulletin de la S. M. F., 1986, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...

متن کامل

Distortion of quasiconformal mappings with identity boundary values

Teichmüller’s classical mapping problem for plane domains concerns finding a lower bound for the maximal dilatation of a quasiconformal homeomorphism which holds the boundary pointwise fixed, maps the domain onto itself, and maps a given point of the domain to another given point of the domain. For a domain D ⊂ Rn , n ≥ 2 , we consider the class of all Kquasiconformal maps of D onto itself with...

متن کامل

Area distortion under certain classes of quasiconformal mappings

In this paper we study the hyperbolic and Euclidean area distortion of measurable sets under some classes of K-quasiconformal mappings from the upper half-plane and the unit disk onto themselves, respectively.

متن کامل

Distortion in the Spherical Metric under Quasiconformal Mappings

This paper contains bounds for the distortion in the spherical metric, that is to say, bounds for the constant of Hölder continuity of mappings f : (Rn, q) → (Rn, q) where q denotes the spherical metric. The mappings considered are K-quasiconformal (K ≥ 1) and satisfy some normalizations or restrictions. All bounds are explicit and asymptotically sharp as K → 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2006

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.11.066